UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions
نویسندگان
چکیده
Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C-I and C-Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion.
منابع مشابه
Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells
Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we ...
متن کاملLC-MS/MS for the detection of DNA interstrand cross-links formed by 8-methoxypsoralen and UVA irradiation in human cells.
DNA interstrand cross-links (ICLs) are induced by many carcinogens and anitcancer drugs. ICL is a covalent linkage of both strands of DNA, preventing DNA strand separation during transcription and replication; thus, it is extremely cytotoxic in vivo. Psoralen and its derivatives are widely applied for the clinical treatment of several skin diseases and cutaneous T cell lymphoma, and they are al...
متن کاملAnticancer potential of a photoactivated transplatin derivative containing the methylazaindole ligand mediated by ROS generation and DNA cleavage.
The limitations associated with the clinical utility of conventional platinum anticancer drugs have stimulated research leading to the design of new metallodrugs with improved pharmacological properties, particularly with increased selectivity for cancer cells. Very recent research has demonstrated that photoactivation or photopotentiation of platinum drugs can be one of the promising approache...
متن کاملSpecific transcriptional responses induced by 8-methoxypsoralen and UVA in yeast
Treatment of eukaryotic cells with 8-methoxypsoralen plus UVA irradiation (8-MOP/UVA) induces pyrimidine monoadducts and interstrand crosslinks and initiates a cascade of events leading to cytotoxic, mutagenic and carcinogenic responses. Transcriptional activation plays an important part in these responses. Our previous study in Saccharomyces cerevisiae showed that the repair of these lesions i...
متن کاملUVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages
UVA (320-400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb...
متن کامل